
Speculative Probing:
Hacking Blind in the Spectre Era

Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, Cristiano Giuffrida



BlindSide demo
• Target: elevate privileges through a ROP attack

– Leak kernel image location for ROP gadgets
– Leak kernel heap location that will contain the ROP payload
– Leak payload location in the kernel heap for a reliable ROP attack

• We start with a single buffer overflow

• No direct information leakage primitive, but instead use BlindSide to leak

• Code-reuse mitigations in place (e.g. kernel address-space layout randomization)

• Spectre mitigations in place (e.g. eIBRS, retpoline, array index masking)

2



BlindSide demo

3

Unprivileged user



BlindSide demo

4

Prepare vulnerable buffer
&

cache attack items



BlindSide demo

5

Found kernel image

Probing for kernel heap



BlindSide demo

6

Found kernel heap

Found vulnerable buffer
(ROP payload location)



BlindSide demo

7

Found kernel heap

Found vulnerable buffer
(ROP payload location)

Applied ROP attack

Elevated privileges



What just happened?
• Combined buffer overflow with speculative execution, to be able to perform a 

speculative control-flow hijack

• On top of this hijacking primitive, we then craft stronger primitives to blindly 
probe for elements in memory under the speculative execution domain:

– First, find kernel image location with Code Page Probing primitive

– Then, find kernel heap location with Data Page Probing primitive

– Finally, find ROP payload location with Object Probing primitive

• Finish with a ROP attack for privilege escalation

8



buf

fptr

C
O
D
E

D
A
T
A

MEMORY

9



buf

fptr

C
O
D
E

D
A
T
A

MEMORY

call *fptr

crash
crash
crash

Probe results are inferred through
a fault covert channel

With code randomization and with 
the lack of an info leak, 

BROP-like attacks can probe
crash-resistant programs

10



Impossible in a high value target like 
the kernel (crash-sensitive)

Probe results are inferred through
a fault covert channel

Probe results are inferred through
a microarchitectural covert channel

buf

fptr

C
O
D
E

D
A
T
A

MEMORY

if(slow-condition){
…
call *fptr
…

}

With code randomization and with 
the lack of an info leak, 

BROP-like attacks can probe
crash-resistant programs

BlindSide: execute the
indirect branch speculatively

crash
crash
crash

m
is

-s
p

ec
u

la
ti

o
n

11



if(slow-condition){
…
call *fptr
…

}
Impossible in a high value target like 

the kernel (crash-sensitive)

Probe results are inferred through
a fault covert channel

Probe results are inferred through
a microarchitectural covert channel

buf

fptr

C
O
D
E

D
A
T
A

MEMORY

With code randomization and with 
the lack of an info leak, 

BROP-like attacks can probe
crash-resistant programs

BlindSide: execute the
indirect branch speculatively

crash
crash
crash

Bypasses Spectre
mitigations, e.g., 

eIBRS and retpoline

BlindSide

12

m
is

-s
p

ec
u

la
ti

o
n



Speculative Probing Primitives

• Code page probing (no gadget)

• Gadget probing (probe for a gadget, e.g. a Spectre gadget)

• Data page probing (gadget with two memory dereferences)

• Object probing (gadget with three memory dereferences)

• Spectre probing (probe with a Spectre gadget; four memory deref.)

13

gadget
required

no gadget
required



Availability of Indirect Branches
• ~50% (7,929) of all indirect branches (15,762)

control-dependent on a conditional branch
within a distance of 50 instructions

• ~45% (7,239) of IB are within a distance
of 10 instructions

• ~37% (5,843) of IB are within a distance
of 5 instructions

• Speculative Execution window can fit > 100 instructions

14



Availability of Gadgets

15



Availability of Gadgets

• Spectre gadgets for the majority of the registers
– Generally a single fitting gadget is sufficient
– Relaxing the gadget template will allow to find more
– Chaining gadgets might also be an option

16



Proof-of-Concept Exploits
• Used a heap buffer overflow (CVE-2017-7308) to showcase BlindSide

in the Linux kernel (version 4.8.0)

• Three exploits using Speculative Probing primitives:
1. Breaking kernel ASLR
2. Leaking root password hash from heap/physmap (architectural data-only attack)
3. Leaking kernel code (fine-grained randomization + software-XoM)

• To speed up probing: Prime+Probe → Flush+Reload
– F+R through a user page shared in physmap

17



Conclusion
• BlindSide generalizes the threat models of BROP and Spectre attacks by 

combining them

• With the combination being stronger than the sum of the parts
– BlindSide enhances BROP to allow hacking blind in crash-sensitive domains
– BlindSide enhances Spectre by making mitigations ineffective

• For exploit demos and source code, check out:
https://www.vusec.net/projects/blindside/

17

https://www.vusec.net/projects/blindside/

